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Analytic formulae based on periodic fundamental solutions are obtained for the correction teusor and 

the effective elasticity tensor of dispersed statistically homogeneous elastic composites. 

THE ws~ vigorous results in the mechanics of composites can be obtained by the method of two-scale 
asymptotic expansions [l-5]. In this method, the effective elasticity tensor is usually represented in the 
form 

N 
c, = Zf&.+K. 

tJ=l 
:fp=l 

p=1 
(0.1) 

where f, is the fraction by volume of a component of the N-component composite, C, is the corres- 

ponding elasticity tensor, and K is the correction tensor, or corrector. The sum of the first N terms on the 
right-hand side of (0.1) gives the effective tensor obtained by Voigt homogenization. We shall consider 

below the case of a two-component composite for which f, = f, f, = (l- f), where f is the volume fraction 

of the dispersed component. 
To determine the correction tensor in the method of two-scale asymptotic expansion it is necessary to 

solve the so-called cell problem, i.e. construct a periodic solution of the equations of the theory of 
elasticity in a cell. 

As well as difference methods of the finite-element and finite-difference types, the following (numer- 
ical) methods exist for solving the cell problem. The method of Eshelby transformation strain, taking 
account of the variability of the field of transformation strain within the inclusion, has been used in [6-91. 
One of the advantages of this approach is the possibility of analysing composites with anisotropic 
components. However, from the numerical point of view they are unsatisfactory because of the need to 
solve a system of three-dimensional integral equations of the first kind with tensor density fields of the 
transformation strain. Using the periodic fundamental solution for an isotropic medium [lo] numerical 

values of the effective characteristics of dispersionally reinforced composites with isotropic components 

were obtained in [11, 121 by multiple expansions. A similar fundamental solution was used in [13] 

combined with the Galerkin method to solve a system of boundary integral equations on the surface 
separating the components. Boundary conditions for an initially isotropic porous medium were proposed 
in [14] for the surfaces of the pores and periodic boundary conditions on the external surface of the cell 
are satisfied by solving a system of integral equations of the fit kind with a kernel that is a fundamental 
Kelvin solution. 
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1. FUNDAMENTAL OPERATORS AND SYMBOLS 

Consider an initially anisotropic homogeneous elastic medium whose equilibrium equations 
in R3 have the form 

A(a, -divC *.(V’u) (1.1) 

where u is the displacement vector and C is a fourth-order strictly elliptic elasticity tensor. It is 
assumed that the medium investigated is hyperelastic, which ensures the symmetry of C with 
respect to outer pairs of indices: P’” = CmnY. 

The Fourier transformation 

applied to the operator A gives the corresponding symbol 

The symbol of the stress operator on the boundary manifold with normal field v is defined 
similarly 

TV(u, ,$) =2niv -C * 6 (1.3) 

Using the symbol A’ and the definition of the fundamental solution E of Eq. (l.l), the 
symbol E’ can be represented in the form 

E”(f) = AZ(t) /detAv(E) (1.4) 

where A,” is the matrix of the cofactors of the symbol A’. Formula (1.4) shows that the symbol 
E’ is strictly elliptic and positively homogeneo~ in g of degree -2. For the general anisotropic 
case, only numerical methods of reconstructing E from its symbol are known 1151, but a 
periodic fundamental solution can be constructed directly from the symbol E’. 

To construct the periodic fundamental solution E, we consider a medium with force 
singularities, periodically distributed at the nodes of some spatial grid A. Suppose ai (i = 1, 2, 
3) are line~ly-inde~ndent vectors of the principal periods of A, so that we can represent any 
node IIB EA in the form m =Saiai, where the m, EZ are integer-valued coordinates of the 
node m in the periodic basis (a,). 

We introduce into consideration the conjugate basis (a,*) such that ai *.m = m,. It is clear 
that for mutually orthogonal fundamental basis vectors the conjugate basis vectors are directed 
along the corresponding vectors of the fundamental basis. The grid of the conjugate basis will 
be denoted by A*. Using this notation the periodic delta-function (6,) distributed along the 
nodes of the grid A can be expanded in series 

$(x) = “0” mczn* exp(-2nim* . x) (1.5) 

where VQ is the volume of the f~damental domain (peri~icity cell) formed by the vectors of 
the fundamental periodic basis V, = Z&,1, I a, Aa2 Aa3 I. Formula (1.5) defines the function 6, 
uniquely. 

Substituting the periodic fundamental solution E, into Eq. (1.1) we obtain 

A@,) EP = $1 U-6) 
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where I is the unit diagonal matrix. Looking for E, also in the form of a trigonometric series, 
from (l.S), (1.6) we obtain a formula from which E, can be computed apart from a constant 
tensor 

E;(x) =G’ m*zA, EV(m*)exp(-2nim* .x) 
0 

(1.7) 

where A,,* is the grid of the conjugate basis without the zero node. We have the following 
result [16]. 

Lemma 1. Series (1.7) converges in the b topology to a periodic fundamental solution of 
class p(Q, R3@R3), where c is the space of integrable functions with zero mean in Q. 
Furthermore 

E;,(x) =E(x) +G(x), GE r (Q,R3 @R3) (1.8) 

Note that series (1.7) does not converge absolutely for any x E R3 [17]. 
We denote by fi the disconnected domain occupied by periodically dispersed inclusions. 

Suppose x0 is the characteristic function of this domain. The elastic properties of the two- 
component heterogeneous medium can be represented in the form 

&xn(x) +Czxcn(x) =C1 +Cxc&x), xER3,CS1=R3\Q, C=Cz -Cl (1.9) 

where the subscript 1 refers to the dispersed inclusions, and 2 to the matrix. The right-hand 
side of Eq. (1.9) shows that for the approximate determination of the effective tensor C, it is 
sufficient to determine the effective tensor of the porous medium with elasticity C and pores 
occupying the domain R 

Co =C1 + (1 -f)C+K (1.10) 

where K is the correction tensor of the porous medium. Below we shall assume that the tensor 
C = C, -C, is strictly elliptic. To determine the tensor K we will use the method of two-scale 
asymptotic expansions. 

We will represent the 
asymptotic expansion 

2. ASYMPTOTIC EXPANSIONS 

displacement field in a periodic porous medium in the form of an 

u(x, Y)’ E nl,(x, Y)) Y =x/h (2.1) 
n=O 

where the Y are “fast” variables characterizing the oscillations of the field u. 
Changing to variables x, Y in (1.1) we obtain [5] 

~(a,, a,) = h-*~~ (a.) + h-1~~ (a,, a,) + 2~~ (a,) (2.2) 

Aday) =-vyqy) .vy, Az(a,,ay)=-v,~c(~) .v~-v~.c(Y) .v, 

C,YEe\L? 
A3 (a,) G-V, *C(Y) .v,, C(Y) = o YE 52 L 

In expressions (2.2) and below the variables x and Y are taken to be independent. 
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Substituting the asymptotic series (2.1) into (2.2) we obtain 

Al (aY)% =o, Al (aYh = -A2 (a,, ayho 

AI (ay)& = -A2 (a,, ayh 43 @x)h . . . 

(2.3) 

The first three equations of (2.3), corresponding to X2, K’, Jt’, are of greatest interest for 
finding the effective characteristics of the porous medium. The remaining equations are only 
necessary when analysing the behaviour of the field microstructure in the vicinity of bound- 
aries or in domains with large gradients (with respect to x). 

We denote by W the subspace of tf’(Q\R, R3 0R3) such that the condition Q, E W is 
equivalent to the periodicity of @ and T(t+, a,)@ l&an= 0, where T is the stress operator on an 
with the outward unit normal vector u directed away from Q\fz. 

Lemma 2. In order for the equation AI(&)0 = F, @E W, FE H-’ to be solvable (modR’), it 
is necessary and sufficient that the mean “value” of F in Q& be zero. 

Proof. The second Korn inequality, whose proof by virtue of (1.8) and the methods of integral 

equations reduces to the non-periodic case, ensures the coerciveness of the bilinear form 

a, (Cp, \zr) =IQpvy@ .. C .. vy*dY 

in WIR3. The need to consider the factor-space WI R3 is due to the existence of non-trivial periodic 
solutions of the equation s~(A~)=~. Here, unlike in the non-~riodi~ case, such solutions are affine 
displacements. One should also note that for @E W 

JQ\,&, (3 y) MY=0 

Co~o~Z~ry 1. The unique periodic solution of the first equation of (2.3) in QUZ is a solution of 
the form ug = (x, Y) = u,,(x). 

2. The general solution of the second equation of (2.3) in Q& has the form 

u1 (JC, Y) =H (Y) _ eg (x) + u;(x), eo = sym(Vuo) (2.4) 

where H is a t~rd-order tensor field, being the solution of the equation A,H = 0 and QQ and 
TH tan= -u-C. 

3. For the third equation of (2.3) to be solvable it is necessary and sufficient that 

SQ\SZ& &>Uod.y+s~\nA~ (a,, ay)‘hdY=O (2.5) 

It follows from (2.4) that 

lQ\n& (a,, ay)U,dY= -diVJp\nC +- VyH(Y)dY . . +, (2.6) 

To obtain this expression we took into account that the term II; does not occur in the third 
equation of (2.3). Bearing in mind (2.6), we obtain from (2.5) 

(I - f) div.& .. co (x) + div,K *. eo (x) =O 

K= -VG&-$ ..uy @H(Y)dY 
(2.7) 

where f is the volume porosity coefficient. Here and below as is taken to be an oriented mani- 
fold with orientation induced from the domain QKL 

Equation (2.7) is the required equilibrium equation for a homogenized medium. From (2.7) 
it follows that the effective elasticity tensor of a porous medium has the form 



The effective elasticity tensors for dispersed composites 121 

C5=(1 -f)C+K 

The first term on the right-hand side of (2.8) corresponds to Voigt homogenization. 

(2.8) 

3. 

The Somigliana identity 
with elasticity tensor C) 

DETERMINATION OF THE CORRECTOR 

for Q\&2 gives (initially considering in this section a porous medium 

(l~ZIi~)~(Y’) =JaQE;(Y’-Y”) WJ~~~~-M”‘+H~, Y’EaS1 

H, = vi5’fe\nH(Y)dY 
(3.1) 

where S is a singular matrix operator obtained by restricting the double-layer potential on the 
carrying surface &. It is necessary to introduce H, on the right-hand side of (3.1) because the 
tensor Ei is defined by formula (1.7), apart from a constant vector. 

Lemma 3, If the domain n is centrally symmetric about the origin of coordinates then 

JanJanE;(Y’ - Y”) @u yfl .- CdY’dY” =0 (3.2) 

Proof. By (1.7) condition (3.2) is equivalent to 

where &, &, are the characteristic functions of aR and Q respectively. To prove (3.3) it is sufficient to 
note that the characteristic functions under consideration, just like their Fourier-transforms, are even, so 

that the symbol E’ is also even. 

Definition. The spectrum of the operator S is the set of those R for which the operator J_I = S 
is non-invertible in the class of continuous operators acting in the appropriate functional space. 

This definition is identical with that used in spectral theory and does not differ significantly 
from the definition of a spectrum in the theory of integral equations. Analysis of the periodic 
solutions of the second bounda~-value problem with surface stresses specified on afi shows 
that theJoints I A I= g lie outside the spectral circle of the operator S acting in the Sobolev 
spaces H”(&, R3), s>O of functions with zero mean on an. However, in the spaces Ii” the 
spectral circle already contains the point n = X, with a corresponding spectral space consisting 
of “rigid” displacements of the contour. 

From the Somigliana identity Lemma 3 and subsequent remarks we have the following 
lemma. 

Lemma 4. Under the conditions of Lemma 3 the Neumann series 

(?41 t S)_’ =2 z (-2s)” 
n=O (3.4) 

converges absolutely in the operator topology (H”, H’), s > 0. 
In the statement of the lemma, (-2S)n is the matrix integral operator that is the com~sition 

of n singular integral operators (-2s). The rate of convergence of this series can be estimated 
in terms of the majorant p =II 2Sll,. If pc 1 series (3.4) converges faster than a geometrical 
series with common ratio p . 

Substituting expressions (3.1) and (3.4) into the expression for the corrector (2.7) and trans- 
forming the surface integrals over & into volume integrals, we obtain 

I&, (-2)n+i (27r)2”+2V5+2 x ( z: 
P*Ena 

x~(&)x~(Elf-llf;)... 
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p,‘EA:, p=O, . . . . n, l-In= fi A,* 
p=o 

Expression (3.5) is the required formula for the correction tensor. Bearing in mind the 
alternating sign of the terms of the series with respect to II and restricting ourselves to the first 
term corresponding to n = 0, we obtain a lower approximation for the corrector 

K1= -8n2V3 Z 
m*E A,* 

I x”~ I *C . . m* @ Ev(m*) .@ m* . . C (3.6) 

Similarly, if we restrict ourselves to the first two terms of the series in n, one can easily obtain 
an upper estimate for the correction tensor from (3.5) 

t 4(2n)‘Vi3 lz I: 
m,*EA,* rn:EAz 

xVs2(m3xvs2(-m3 xvS2(mT - d> X 

XC ..mz@EY(rnE) em: ..C..mT@EY(m:) ernr..C < 

G - 87r*V~* m*z,,* ixv~12CSe m*@E (m*) @m*..C+ 
0 

t4(2n)'Vc*f me$As lxVn(m *>l”C*a m*@E”(m*> @m*..C= 
0 

= -8n*V&*(l-21) m*zI\* I~“~l*C..m*@E”(rn*) Qm*..C 
0 

(3.7) 

In obtaining (3.7) we used Young’s inequaiity for convolutions. 

Theorem. Series (4.5)-(4.7) converge absolutely. 
The proof follows from the asymptotic estimate 

IX”JEI )I =o(lEl -3’2L Ic;I-+~~ (3.8) 

which is satisfied since x0 E L2(R3). It remains to note that the symbol C . . m * @E’(m*)@ 
m* . .C is positively homogeneous of degree zero with respect to m*. 

Note that the transition from the effective tensor of the porous medium CL to the 
corresponding effective tensor of the composite is given according to (1.10) and (2.8) by the 
formula C, = C, + C;. 

4. EXAMPLE 

Consider a dispersed composite with an isotropic matrix characterized by dimensionless elastic para- 
meters (Young’s modulus and Poisson’s ratio) E, = 1 and v, = 0.3 and spherical inclusions with E, = 0.01 
and v, = 0.45, distributed at the nodes of a simple cubic lattice. The limiting packing coefficient f for the 
lattice (the volume fraction of the dispersed inclusions) is x/6 ~0.52. A composite with this kind of 
inclusion serves as a model of certain shock-proof plates. 

Figure 1 shows numerical results giving the dependence of the effective moduli C:, (curve 1) and 
C:“* (curve 2) on the packing coefficient (j). The calculation was performed using (3.6). For comparison, 
similar graphs of the Lame constants ;1, and p,, were constructed for the effective isotropic medium 
obtained by the Voigt homogenization method. 

Because the simple cubic structure necessarily leads to cubic anisotropy in the ratios of the elastic 
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properties, the figure shows the dependence of the parameter a 

,,,:‘la - (,;l” _C;‘3*)/2 
(4-l) 

which describes the degree of anisotropy of the effective elastic medium, on the packing coefficient. It 

follows directly from (4.1) that for the original isotropic medium without inclusions a = 0. 
The processor time on an IBM PC/AT-286 (12 MHz) computer required for 2,4,5, and 6 nodes was 

100,6W, lo3 and 1.8 x 10’ seconds, respectively. 
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